Article ID Journal Published Year Pages File Type
190042 Electrochimica Acta 2010 7 Pages PDF
Abstract

Unstable acetonitrile | aqueous emulsions generated in situ with ultra-turrax agitation are investigated for applications in dual-phase electrochemistry. Three modes of operation for liquid | liquid aqueous–organic electrochemical processes are demonstrated with no intentionally added electrolyte in the organic phase based on (i) the formation of a water-soluble product in the aqueous phase in the presence of the organic phase, (ii) the formation of a product and ion transfer at the liquid | liquid–electrode triple phase boundary, and (iii) the formation of a water-insoluble product in the aqueous phase which then transfers into the organic phase.A three-electrode electrolysis cell with ultra-turrax agitator is employed and characterised for acetonitrile | aqueous 2 M NaCl two phase electrolyte. Three redox systems are employed in order to quantify the electrolysis cell performance. The one-electron reduction of Ru(NH3)63+ in the aqueous phase is employed to determine the rate of mass transport towards the electrode surface and the effect of the presence of the acetonitrile phase. The one-electron oxidation of n-butylferrocene in acetonitrile is employed to study triple phase boundary processes. Finally, the one-electron reduction of cobalticenium cations in the aqueous phase is employed to demonstrate the product transfer from the electrode surface into the organic phase. Potential applications in biphasic electrosynthesis are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,