Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1901105 | Reports on Mathematical Physics | 2010 | 48 Pages |
Abstract
Considered is the Schrödinger equation in a finite-dimensional space as an equation of mathematical physics derivable from the variational principle and treatable in terms of the Lagrange-Hamilton formalism. It provides an interesting example of “mechanics” with singular Lagrangians, effectively treatable within the framework of Dirac formalism. We discuss also some modified “Schrödinger” equations involving second-order time derivatives and introduce a kind of nondirect, nonperturbative, geometrically-motivated nonlinearity based on making the scalar product a dynamical quantity. There are some reasons to expect that this might be a new way of describing open dynamical systems and explaining some quantum “paradoxes”.
Related Topics
Physical Sciences and Engineering
Mathematics
Mathematical Physics