Article ID Journal Published Year Pages File Type
1901135 Reports on Mathematical Physics 2009 14 Pages PDF
Abstract

Using a (1, 1)-tensor L with zero Nijenhuis torsion and maximal possible number (equal to the number of dependent variables) of distinct, functionally independent eigenvalues we define, in a coordinate-free fashion, the seed systems which are weakly nonlinear semi-Hamiltonian systems of a special form, and an infinite set of conservation laws for the seed systems. The reciprocal transformations constructed from these conservation laws yield a considerably larger class of hydrodynamic-type systems from the seed systems, and we show that these new systems are again defined in a coordinate-free manner, using the tensor L alone, and, moreover, are weakly nonlinear and semi-Hamiltonian, so their general solution can be obtained by means of the generalized hodograph method of Tsarev.

Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics