Article ID Journal Published Year Pages File Type
1901186 Reports on Mathematical Physics 2008 26 Pages PDF
Abstract
The question of existence of self-adjoint time operators for unitary evolutions in classical and quantum mechanics is revisited on the basis of Halmos-Helson theory of invariant subspaces, Sz.-Nagy-Foiaş dilation theory and Misra-Prigogine-Courbage theory of irreversibility. It is shown that the existence of self-adjoint time operators is equivalent to the intertwining property of the evolution plus the existence of simply invariant subspaces or rigid operator-valued functions for its Sz.-Nagy-Foiaş functional model. Similar equivalent conditions are given in terms of intrinsic randomness in the context of statistical mechanics. The rest of the contents are mainly a unifying review of the subject scattered throughout an unconnected literature. A well-known extensive set of equivalent conditions is derived from the above results; such conditions are written in terms of Schrrdinger couples, the Weyl commutation relation, incoming and outgoing subspaces, innovation processes, Lax-Phillips scattering, translation and spectral representations, and spectral properties. Also the natural procedure dealing with symmetric time operators in standard quantum mechanics involving their self-adjoint extensions is illustrated by considering the quantum Aharonov-Bohm time-of-arrival operator.
Related Topics
Physical Sciences and Engineering Mathematics Mathematical Physics
Authors
,