Article ID Journal Published Year Pages File Type
190147 Electrochimica Acta 2011 15 Pages PDF
Abstract

In this work we present a multiscale theoretical methodology that scales up ab initio calculated data into elementary kinetic models in order to simulate Polymer Electrolyte Membrane Fuel Cells (PEMFC) transient operation. Detailed Density Functional Theory (DFT) calculations are performed on a model Pt(1 1 1) surface to determine the elementary kinetic rates of the Oxygen Reduction Reaction (ORR) mechanism at a Pt-based PEMFC cathode. These parameters include the effect of surface coverage on the activation barriers and are implemented into a Mean Field model describing the behavior of the electric field and charge distribution at the nanoscale interfacial vicinity to the catalyst, which is in turn coupled with microscale and mesoscale level models describing the charge and reactants and water transport phenomena across the cell. The impact of two possible ORR mechanisms on the simulated i–V curves is investigated: a first route connected with the dissociative adsorption of molecular oxygen on Pt(1 1 1), a second route related to the formation and the transformation of OOH surface species. The similarities and differences of the associated calculated i–V responses for each of these routes and the consequences on the interpretation of electrochemical observables at the cell level are discussed.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,