Article ID Journal Published Year Pages File Type
190382 Electrochimica Acta 2010 5 Pages PDF
Abstract

A biosensor for detecting the aromatic substance 4-nitrophenol based on Agrocybe aegerita peroxygenase (AaP) immobilized with chitosan-stabilized gold nanoparticles is presented here. This biosensor measures the enzymatic product of 4-nitrophenol peroxygenation, 4-nitrocatechol, which is electrochemically detected in the presence of hydrogen peroxide. Cyclic voltammetry and amperometry were used to characterize the proposed biosensor. The linear range of the AaP biosensor for the detection of 4-nitrophenol was between 10 and 30 μM with a detection limit of 0.2 μM (based on the S/N = 3). The catalytic property of AaP to oxidize 4-nitrophenol was compared with two other heme proteins, a camphor-hydroxylating cytochrome P450 monooxygenase (P450cam, CYP101) and horseradish peroxidase (HRP). The results revealed that only AaP is capable of catalyzing the hydroxylation of 4-nitrophenol into 4-nitrocatechol. Consequently, AaP could be a particularly potent biocatalyst that may fill the gap between cytochrome P450s and common heme peroxidases.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , ,