Article ID Journal Published Year Pages File Type
1904912 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2012 13 Pages PDF
Abstract

Peroxisomes perform a large variety of metabolic functions that require a constant flow of metabolites across the membranes of these organelles. Over the last few years it has become clear that the transport machinery of the peroxisomal membrane is a unique biological entity since it includes nonselective channels conducting small solutes side by side with transporters for ‘bulky’ solutes such as ATP. Electrophysiological experiments revealed several channel-forming activities in preparations of plant, mammalian, and yeast peroxisomes and in glycosomes of Trypanosoma brucei. The properties of the first discovered peroxisomal membrane channel – mammalian Pxmp2 protein – have also been characterized. The channels are apparently involved in the formation of peroxisomal shuttle systems and in the transmembrane transfer of various water-soluble metabolites including products of peroxisomal β-oxidation. These products are processed by a large set of peroxisomal enzymes including carnitine acyltransferases, enzymes involved in the synthesis of ketone bodies, thioesterases, and others. This review discusses recent data pertaining to solute permeability and metabolite transport systems in peroxisomal membranes and also addresses mechanisms responsible for the transfer of ATP and cofactors such as an ATP transporter and nudix hydrolases. This article is part of a Special Issue entitled: Metabolic Functions and Biogenesis of Peroxisomes in Health and Disease.

► We describe transport of solutes across the peroxisomal membrane. ► The membrane contains pore-forming channels and transporters for ATP. ► Export from peroxisomes of the beta-oxidation products is described. ► Transfer of cofactors across the membrane is analyzed.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, ,