Article ID Journal Published Year Pages File Type
1905982 Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2006 9 Pages PDF
Abstract

Acute intermittent porphyria (AIP) is a neuropathic disease caused by a dominant inherited deficiency in porphobilinogen deaminase (PBGD). We investigated the expression and the degradation of the human PBGD-mutations G748A, G748C and 887insA following transfection into human SH-SY5Y neuroblastoma cells. Mutant proteins exhibited reduced protein expression compared to transfected wild-type (wt) PBGD as revealed by Western blotting. The transcription levels assessed by real-time PCR of these mutant species were identical to those of the wild type. Immuno-fluorescence microscopy revealed reduced cellular distribution of the mutated PBGDs in the cytosol and the nucleus in comparison to the wild-type PBGD. Enhanced cellular accumulation of the mutated and wild-type PBGDs was detected following inhibition of the proteasome by the inhibitors CLBL and hemin. Elevated expression of wt and mutated PBGD protein levels was either achieved by hemin or heme-arginate treatment. On the other hand, enhanced PBGD degradation was achieved by lead poisoning of ALAD in the SH-SY5Y cells concomitant with acceleration of proteasomal activity, most probably by ALAD participation in proteasomal regulation [G.G. Guo, M. Gu, J.D. Etlinger, 240-kDa proteasome inhibitor (CF-2) is identical to delta-aminolevulinic acid dehydratase. J Biol Chem 1994; 269:12399–402.] Our results suggest that the difference in expression between the wild-type and mutant proteins appears to be regulated on the level of protein degradation. In conclusion, we demonstrate that the PBGD cellular pool is controlled by the proteasome activity, which in turn is down regulated by hemin or up-regulated by Pb-ALAD.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , ,