Article ID Journal Published Year Pages File Type
190675 Electrochimica Acta 2011 8 Pages PDF
Abstract

The role played by the substitution of Mn on the electrochemical behaviour of Li3V2(PO4)3 has been investigated. Independently of the synthesis route, the Mn doping improves the electrochemical features with respect to the undoped samples. Different reasons can be taken into consideration to explain the electrochemical enhancement. In the sol–gel synthesis the capacity slightly enhances due to the Mn substitution on both the V sites, within the solubility limit x = 0.124 in Li3V2−xMnx(PO4)3. In the solid state synthesis the significant capacity enhancement is preferentially due to the microstructural features of the crystallites and to the LiMnPO4 phase formation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,