Article ID Journal Published Year Pages File Type
190859 Electrochimica Acta 2010 6 Pages PDF
Abstract

The effects of hydrophobicity of the cathode catalyst layer on the performance of a PEM fuel cell are studied. The surface contact angle is measured to understand the changes of the hydrophobicity of the cathode catalyst layer upon the addition of hydrophobic dimethyl silicone oil (DSO). The results show that the contact angle increases with the DSO loadings in the cathode catalyst layer ranging from 0 to 0.65 mg/cm2. The subsequent electrochemical measurements of the fuel cells with various cathodes reveal that the addition of DSO in the cathode catalyst layer can effectively prevent the cathode flooding at high current density, thus leading to a much higher limiting current density and the maximum power density when compared to the fuel cell with a normal cathode. An optimal DSO loading in the cathode catalyst layer is found to be around 0.5 mg/cm2 under the testing conditions in this work. The fuel cell with cathode loaded with 0.5 mg/cm2 can reach the maximum power density of 356 mW/cm2 in H2/air (or 709 mW/cm2 in H2/O2) at room temperature, which is around 2.5 times in H2/air (or 1.8 times in H2/O2) of that with normal cathode. All of the results indicate that the hydrophobicity of the cathode catalyst layer plays a crucial role in the water management of the fuel cell. The possible function of the DSO on improved oxygen solubility for the oxygen starved cathode during flooding warrants some further investigation.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,