Article ID Journal Published Year Pages File Type
190863 Electrochimica Acta 2010 12 Pages PDF
Abstract

Through-plane liquid accumulation, distribution and transport inside polymer electrolyte fuel cell (PEFC) components were analyzed as a function of channel wall hydrophobicity with the use of high-resolution neutron imaging. Neutron images were taken with polytetrafluoroethylene (PTFE) coated and uncoated flow channel walls. Anode to cathode liquid distribution was analyzed for each case at low and high current conditions over 20 min of operation. The form and amount of liquid water inside the channels and diffusion media (DM) were compared for hydrophobically coated channels and hydrophilic channels, and a primary liquid transport-flooding mechanism is suggested for each case. The location and value of maximum water storage in DM at low and high current operation were analyzed and slopes of water mass versus distance curve were calculated to compare the significance of capillary liquid flow and phase-change-induced flow within the diffusion media. A significant effect of CL|MPL and MPL|DM interfaces on liquid transport and flooding is found through the analysis of micro-porous layer (MPL) water content and saturation profile along the CL|MPL and MPL|DM interface region.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,