Article ID Journal Published Year Pages File Type
1909659 Free Radical Biology and Medicine 2010 11 Pages PDF
Abstract

Although nonsteroidal anti-inflammatory drugs (NSAIDs) provide important control of pain and inflammation, they have been overshadowed by concerns regarding atherothrombotic complications. However, celecoxib seems to have a relatively good cardiovascular profile and may improve endothelial function in coronary heart disease. This led us to the hypothesis that celecoxib induces the vasculoprotective enzyme heme oxygenase-1 (HO-1). In human umbilical vein and aortic endothelial cells, 24–48 h treatment with celecoxib induced HO-1 mRNA and protein expression and increased HO-1 enzyme activity. This effect was not seen with rofecoxib or indomethacin. Supplementation of culture medium with iloprost or prostaglandin E2 failed to reverse celecoxib-mediated HO-1 induction, indicating a cyclooxygenase-independent mechanism. Rather, this action of celecoxib involved generation of mitochondria-derived reactive oxygen species, Akt phosphorylation, and nuclear translocation of the transcription factor Nrf2, with N-acetylcysteine, PI-3K antagonist LY290042, and dominant-negative Akt abrogating the effects. Furthermore, celecoxib-induced HO-1 was inhibited by dominant-negative Nrf2. The functional significance of HO-1 induction was revealed by celecoxib-mediated inhibition of VCAM-1 expression, a response reversed by the HO-1 antagonist zinc protoporphyrin. HO-1 induction provides a molecular mechanism for clinical observations indicating relative freedom from atherothrombotic complications in patients taking celecoxib compared to other NSAIDs with comparable anti-inflammatory activity.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , , , , , , ,