Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
1910441 | Free Radical Biology and Medicine | 2008 | 10 Pages |
Abstract
Increased intracellular adhesion molecule 1 (ICAM-1) expression and enhanced monocyte recruitment to the endothelium are critical steps in the early development of atherosclerosis. The 15-lipoxygenase 1 (15-LOX1) pathway can generate several proinflammatory eicosanoids that are known to enhance ICAM-1 expression within the vascular endothelium. Oxidative stress can exacerbate endothelial cell inflammatory responses by modifying arachidonic acid metabolism through the 15-LOX1 pathway. Because selenium (Se) influences the oxidant status of cells and can modify the expression of eicosanoids, we investigated the role of this micronutrient in modifying ICAM-1 expression as a consequence of enhanced 15-LOX1 activity. Se supplementation reduced ICAM-1 expression in bovine aortic endothelial cells, an effect that was reversed with 15-LOX1 overexpression or treatment with exogenous 15-hydroperoxyoctadecadienoic acid (15-HPETE). ICAM-1 expression increased proportionately when intracellular15-HPETE levels were allowed to accumulate. However, changes in intracellular 15-HETE levels did not seem to affect ICAM-1 expression regardless of Se status. Our results indicate that Se supplementation can reduce 15-HPETE-induced expression of ICAM-1 by controlling the intracellular accumulation of this fatty acid hydroperoxide in endothelial cells.
Keywords
Related Topics
Life Sciences
Biochemistry, Genetics and Molecular Biology
Ageing
Authors
Lorraine M. Sordillo, Katie L. Streicher, Isis K. Mullarky, Jeffery C. Gandy, Wendy Trigona, Chris M. Corl,