Article ID Journal Published Year Pages File Type
1911294 Free Radical Biology and Medicine 2007 12 Pages PDF
Abstract

Obesity has been implicated in several diseases, including cancer; however, the relationship of obesity and susceptibility to ultraviolet (UV) radiation-caused skin diseases has not been investigated. As UV-induced oxidative stress has been implicated in several skin diseases, we assessed the role of obesity on UVB-induced oxidative stress in genetically obese Lepob/Lepob (leptin-deficient) mice. Here, we report that chronic exposure to UVB (120 mJ/cm2) resulted in greater oxidative stress in the skin of obese mice in terms of higher levels of H2O2 and NO production, photo-oxidative damage of lipids and proteins, and greater depletion of antioxidant defense enzymes, like glutathione, glutathione peroxidase, and catalase. As UV-induced oxidative stress mediates activation of MAPK and NF-κB signaling pathways, we determined the effects of UVB on these pathways in obese mice. Exposure of obese mice to UVB resulted in phosphorylation of ERK1/2, JNK, and p38 proteins of the MAPK family. Compared to wild-type mice, the obese mice exhibited higher levels of phosphorylation of these proteins, greater activation of NF-κB/p65, and higher levels of circulating proinflammatory cytokines, including TNF-α, IL-1β and IL-6, on UVB irradiation. Taking these results together, our study suggests for the first time that obesity in mice is associated with greater susceptibility to UVB-induced oxidative stress and therefore may be a risk factor for skin diseases associated with UVB-induced oxidative stress.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, ,