Article ID Journal Published Year Pages File Type
1911702 Free Radical Biology and Medicine 2007 15 Pages PDF
Abstract

The objectives of this study were to determine the effects of chronic treatment with pioglitazone, a peroxisome proliferator-activated receptor γ agonist, on the impaired endothelium-dependent relaxation seen in aortas from established streptozotocin (STZ)-induced diabetic rats, and to identify some of the molecular mechanisms involved. Starting at 8 weeks of diabetes, pioglitazone (10 mg/kg) was administered to STZ-induced diabetic rats for 4 weeks. In untreated STZ rats (vs age-matched control rats): (1) ACh-induced relaxation, cGMP accumulation, phosphorylation of the cGMP-dependent protein kinase substrate vasodilator-stimulated phosphoprotein at Ser-239 [an established biochemical end-point of nitric oxide (NO)/cGMP signaling], and Cu/Zn-superoxide dismutase (SOD) expression and SOD activity were all reduced; (2) aortic superoxide generation, nitrotyrosine expression, and NAD(P)H oxidase activity were increased; (3) plasma endothelin-1 (ET-1) and aortic c-Jun (AP-1 component) protein expressions were increased. Pioglitazone treatment markedly corrected the above abnormalities. Collectively, these results suggest that pioglitazone treatment improves endothelium-dependent relaxation by reducing oxidative stress via increased SOD activity, decreased NAD(P)H oxidase activity, and a decreased ET-1 level, and that this decreased ET-1 level may be attributable to an inhibition of the AP-1 signaling pathway.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , ,