Article ID Journal Published Year Pages File Type
191332 Electrochimica Acta 2010 7 Pages PDF
Abstract

Gaseous oxidation of carbon papers (CPs) decorated with carbon nanotubes (CNTs) with varying degrees of oxidation was conducted to investigate the influence of surface oxides on the performance of electrochemical capacitors fabricated with oxidized CNT/CP composites. The oxidation period was found to significantly enhance the O/C atomic ratio on the composites, and the increase in oxygen content upon oxidation is mainly contributed by the formation of CO and C–O groups. The electrochemical behavior of the capacitors was tested in 1 M H2SO4 within a potential of 0 and 1 V vs. Ag/AgCl. Both superhydrophilicity and specific capacitance of the oxidized CNT/CP composites were found to increase upon oxidation treatment. A linearity increase of capacitance with O/C ratio can be attributed to the increase of the population of surface oxides on CNTs, which imparts excess sites for redox reaction (pseudocapacitance) and for the formation of double-layer (double-layer capacitance). The technique of ac impedance combined with equivalent circuit clearly showed that oxidized CNT/CP capacitor imparts not only enhanced capacitance but also a low equivalent series resistance.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,