Article ID Journal Published Year Pages File Type
191344 Electrochimica Acta 2010 9 Pages PDF
Abstract

The oxide film formed on nickel base alloys at high temperature and high pressure water exhibits semi-conducting properties evidenced by photocurrent generation when exposed to monochromatic light. The use of macro- and micro-photoelectrochemical techniques (PEC and MPEC) aims to identify the different semiconductor phases and their distribution in the oxide film.Three different nickel base alloys were corroded in recirculation loop at 325 °C in pressurised water reactor primary coolant conditions for different exposition durations.PEC experiments on these materials enable to obtain macroscopic energy spectra showing three contributions. The first one, with a band gap around 2.2 eV, was attributed to the presence of nickel hydroxide and/or nickel ferrite. The second one, with a band gap around 3.5 eV, was attributed to Cr2O3. The last contribution, with a band gap in the range of 4.1–4.5 eV, was attributed to the spinel phase Ni1−xFexCr2O4. In addition, macroscopic potential spectra recorded at different energies highlight n-type semi-conduction behaviours for both oxides, Cr2O3 and Ni1−xFexCr2O4.Moreover, MPEC images recorded at different energies exhibit contrasted regions in photocurrent, describing the distribution of nickel hydroxide and/or nickel ferrite and Cr2O3 in the oxide film at a micron scale.It is concluded that PEC techniques represent a sensitive and powerful way to locally analyse the various semiconductor phases in the oxide scale.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,