Article ID Journal Published Year Pages File Type
191382 Electrochimica Acta 2011 6 Pages PDF
Abstract

Non-aligned and highly densely aligned ZnO nanotube (NTs), synthesized by low temperature solution method were applied as photoanode materials for the fabrication of efficient dye-sensitized solar cells (DSSCs). The crystalline and the morphological analysis revealed that the grown aligned ZnO NTs possessed a typical hexagonal crystal structure of outer and inner diameter ∼250 nm and ∼100 nm, respectively. ZnO seeding on FTO substrates is an essential step to achieve the aligned ZnO NTs. A DSSC fabricated with aligned ZnO NTs photoanode achieved high solar-to-electricity conversion efficiency of ∼2.2% with short circuit current (JSC) of 5.5 mA/cm2, open circuit voltage (VOC) of 0.65 V and fill factor (FF) of 0.61. Significantly, the aligned ZnO NTs photoanode showed three times improved solar-to-electricity conversion efficiency than DSSC fabricated with non-aligned ZnO NTs. The enhanced performances were credited to the aligned morphology of ZnO NTs which executed the high charge collection and the transfer of electrons at the interfaces of ZnO NTs and electrolyte layer.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,