Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
191387 | Electrochimica Acta | 2011 | 6 Pages |
Graphene was synthesized by a chemical method to reduce graphite oxide and well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), powder X-ray diffraction (PXRD) and Fourier transform infrared (FTIR) spectra. Horseradish peroxidase (HRP) immobilized on a graphene film glassy carbon electrode was found to undergo direct electron transfer and exhibited a fast electron transfer rate constant of 4.63 s−1. The HRP-immobilized electrode was investigated by electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV). The CV results showed that the modified electrode gave rise to well-defined peaks in phosphate buffer, corresponding to the electrochemical redox reaction between HRP–Fe(III) and HRP–Fe(II). The obtained electrode also displayed an electrocatalytic reduction behavior towards H2O2. The new H2O2 sensor shows a linear range of 0.33–14.0 μM (R2 = 0.9987) with a calculated detection limit of 0.11 μM (S/N = 3). Furthermore, the biosensor exhibits both good operational storage and storage stability.