Article ID Journal Published Year Pages File Type
1914773 Journal of the Neurological Sciences 2010 11 Pages PDF
Abstract

Although chemotherapy plays an important role in combined treatment of human gliomas, it fails to bring about satisfactory outcomes in a number of patients. One of the major obstacles in this treatment is the development of multidrug resistance (MDR) during treatment. Regulation of MDR in the context of gliomas is poorly understood, and clinical efforts to inhibit it have not been fruitful. Activation of the Hedgehog (HH) pathway has been shown to contribute to the growth, maintenance and relapse of various cancers. As data were not available on the role of Gli1 expression in glioma progression, we analyzed the correlation between Gli1 expression and tumor recurrence after chemotherapy in 60 glioma samples. The effects of inhibiting or activating the HH pathway on sensitizing or rendering glioma cell lines resistant to VCR, VP16, CDDP and ACNU, which are widely used in clinical chemotherapy, were determined. Additionally, the impact of the HH pathway on the expressions of MDR1, MRP1, MVP, MGMT, Bcl-2 and Survivin genes was determined. Our results indicate that overexpression of Gli1 is correlated with glioma recurrence after chemotherapy. We further show that the HH pathway activity can promote clonogenic survival of glioma cell lines in chemotherapy. Additionally, we found that blocking the HH pathway enhanced cytotoxicity of chemotherapeutic agents in glioma cells, through down-regulating the expressions of MDR1, MRP1, MVP, MGMT, Bcl-2 and Survivin genes. Taken together, these results suggest that Gli1 plays a dominant role in chemoresistance of glioma cells, and that suppression of Gli1 expression might be a valid therapeutic option for overcoming MDR and for increasing the success of chemotherapy.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Ageing
Authors
, , , ,