Article ID Journal Published Year Pages File Type
191665 Electrochimica Acta 2010 5 Pages PDF
Abstract

Cobalt oxide (Co3O4) nanotubes have been successfully synthesized by chemically depositing cobalt hydroxide in anodic aluminum oxide (AAO) templates and thermally annealing at 500 °C. The synthesized nanotubes have been characterized by scanning electron microscope (SEM), transmission electron microscope (TEM) and X-ray diffraction (XRD). The electrochemical capacitance behavior of the Co3O4 nanotubes electrode was investigated by cyclic voltammetry, galvanostatic charge–discharge studies and electrochemical impedance spectroscopy in 6 mol L−1 KOH solution. The electrochemical data demonstrate that the Co3O4 nanotubes display good capacitive behavior with a specific capacitance of 574 F g−1 at a current density of 0.1 A g−1 and a good specific capacitance retention of ca. 95% after 1000 continuous charge–discharge cycles, indicating that the Co3O4 nanotubes can be promising electroactive materials for supercapacitor.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,