Article ID Journal Published Year Pages File Type
191831 Electrochimica Acta 2009 6 Pages PDF
Abstract

Li0.5Ni0.25TiOPO4/C composite was synthesized by the co-precipitation method using polyethylene glycol as carbon source. X-ray diffraction study showed that the as-prepared material crystallizes in the monoclinic system (S.G. P21/c). This 3D structure exhibits an open framework favourable to intercalation reactions. The morphology and the microstructure characterisation was performed by scanning electron microscopy (SEM). Small particles (∼1 μm) coated by carbon were observed. Raman study confirms the presence of carbon graphite in the Li0.5Ni0.25TiOPO4/C composite. Cyclic voltammetry (CV) and charge–discharge galvanostatic cycling were used to characterize its electrochemical properties. The Li0.5Ni0.25TiOPO4/C composite exhibits excellent electrochemical performances with good capacity retention for 50 cycles. Approximately 200 mAh/g could be reached at C, C/2, C/5 and C/20 rates in the 0.5–3 V potential range. These results clearly evidenced the positive effect of the carbon coating on the electrochemical properties of the studied phosphate.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,