| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 192571 | Electrochimica Acta | 2009 | 6 Pages |
In this study, a concept for a silicon-based modular solid-state sensor system for inline multi-parameter monitoring of cell-culture fermentation processes is presented. The envisaged multi-parameter sensor system consists of two identical sensor modules and is intended for continuous quantification of up to five (bio-)chemical and physical parameters, namely, glucose and glutamine concentration, pH value, electrolyte conductivity and temperature by applying different transducer principles and/or different operation modes. Experimental results for the field-effect electrolyte-insulator-semiconductor (EIS) sterilisable pH sensor and electrolyte conductivity sensor based on interdigitated electrodes are presented. The ongoing autoclaving does not have any significant impact on the pH-sensitive properties of a Ta2O5-gate EIS sensor. Even after 30 autoclaving cycles, the pH sensors show a clear pH response and nearly linear calibration curve with a slope of 57 ± 1 mV/pH. Additional scanning electron microscopy and ellipsometric investigations do not show any visible surface degradation or changes in the thickness of the pH-sensitive Ta2O5 layer. The preliminary results demonstrate the suitability of the developed EIS sensor for an inline pH measurement during a fermentation process. In addition, interdigitated electrodes of different geometries serving as electrolyte conductivity sensor have been tested for measurements in relatively high ionic-strength solutions.
