Article ID Journal Published Year Pages File Type
192725 Electrochimica Acta 2009 5 Pages PDF
Abstract

The cathode material is synthesized from FeC2O4·2H2O and LiH2PO4 by a solid-state reaction using citric acid as a carbon source. The electric conductivity of the synthesized LiFePO4 has been raised by eight orders of magnitude from 10−9 S cm−1. The LiFePO4/C composite shows a greatly enhanced rate performance and the cyclic stability at room temperature. It delivers an initial discharge capacity of 128 mAh g−1 at 4C, which is retained as high as 92% after 1000 cycles. In addition, the tested low temperature character is attractive. At −20 °C, the composite exhibits a discharge capacity of 110 mAh g−1 at 0.1C. The homogenous morphology, the porous surface, the small particles inside and the conductive carbon observed contribute much to obtain the favorable electrochemical performance.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,