Article ID Journal Published Year Pages File Type
192733 Electrochimica Acta 2009 5 Pages PDF
Abstract

CuO nanoribbons array (NRA) electrode was fabricated by developing a one-step synthesis route, which consists of advantages of large-scale, fast, and without using any surfactant or template. The structure and electrochemical properties of the CuO NRA electrode were examined by using X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), cyclic voltammetry (CV) and galvanostatic cycling. The results demonstrated that the CuO NRA electrode can deliver a reversible capacity as high as 608 mAh g−1 up to 275th cycle. The excellent cycleability, the high capacity retention and the high rate-capability of the CuO NRA electrode is attributed to its peculiar nanostructure with large surface area, numerous interspaces of the CuO nanoribbons, and the solid adhesion of the active material to Cu current collector.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , , , ,