Article ID Journal Published Year Pages File Type
193351 Electrochimica Acta 2007 8 Pages PDF
Abstract

LiNi0.8Co0.15Al0.05O2 and LiNi1/3Co1/3Mn1/3O2 composite cathodes were cycled in model cells to study interfacial phenomena that could lead to electrode degradation. Ex situ spectroscopic analysis of the tested cathodes, which suffered substantial power and capacity loss, showed that the state of charge (SOC) of oxide particles on the cathode surface was highly non-uniform despite the deep discharge of the Li-ion cell at the end of the test. The inconsistent kinetic behavior of individual oxide particles was attributed to the degradation of electronic pathways within the composite cathodes. A simple theoretical model based on a distributed network showed that an increase of the contact resistance between composite electrode particles may be responsible for non-uniform local kinetic behavior of individual oxide particles and the overall degradation of electrochemical performance of composite electrodes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,