Article ID Journal Published Year Pages File Type
193677 Electrochimica Acta 2007 6 Pages PDF
Abstract

The structure of a family of copolyimides in which are alternating stiff/redox pyromellitimide units and flexible/solvating polyethyleneoxide (PEO) strands were studied by using wide angle and small angle X-ray scattering techniques and is fully discussed. It is shown that the rich variety of structures exhibited by these compounds can be understood by considering the dramatic change of flexibility of the chain induced by the variation of the length of the PEO strand compared to that of the pyromellimide segment. In this respect, concerning the compounds which exhibit fully amorphous structures a better understanding of their structural behavior can be obtained in the framework of Flory's theory of semi-rigid polymers. In this approach, the degree of flexibility of the chain is mainly resulting from the relative amount of flexible units constituting the repetition unit of the polymer chain. The final structural mode adopted by each compound in the solid state is then directly a consequence of this intrinsic property of the chain. The introduction of a lithium salt in contact with the copolymer chains induces some structure changes which can also be explained by the modification of the degree of flexibility of the chain. It is found that the best performances in terms of electroactivity and mixed conduction are precisely obtained with the only compound which keeps full amorphicity in absence and in presence of the lithium salt.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,