Article ID Journal Published Year Pages File Type
193880 Electrochimica Acta 2008 10 Pages PDF
Abstract

The effects of grain size on the electrochemical corrosion behavior of a Ni-based superalloy nanocrystalline (NC) coating fabricated by a magnetron sputtering technique, has been investigated in 0.5 M NaCl + 0.05 M H2SO4 solution. Coatings with grain sizes 10 nm, 50 nm and 100 nm were fabricated on glass and the superalloy substrates. The results indicate that a passive film with porous property, n-type semiconductive property and incorporation of chloride ions formed on the NC coating with 100 nm grain size, which increased the susceptibility to pitting corrosion. The NC coatings with 10 nm and 50 nm grain size formed compact, non-porous and p-type passive films without chloride ions, which improved resistance to pitting corrosion. The smaller grain size of the material decrease the amount of chloride ions adsorbed on the surface and promoted the formation of compact passive film, which significantly increased the material's resistance to pitting corrosion in acidic solution.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,