Article ID Journal Published Year Pages File Type
193936 Electrochimica Acta 2009 6 Pages PDF
Abstract

The electrochemical behavior of palladium (II) in nitric acid medium has been studied at platinum and stainless steel electrodes by cyclic voltammetry. The cyclic voltammogram consisted of a surge in cathodic current occurring at platinum electrode at a potential of −0.1 V (vs. Pd), which culminates in a peak at −0.3 V was due to the reduction of Pd(II) to Pd. This was accompanied by a broad scant anodic peak (Ipa) at 0.25 V during scan reversal. Reduction of Pd(II) was irreversible and the diffusion coefficient was found to be 2.35 × 10−8 cm2/s at 298 K. At stainless steel electrode, a surge in the cathodic current occurring at −0.4 V (vs. Pd) was due to palladium deposition, which was immediately followed by a steep increase in cathodic current at −0.66 V due to H+ reduction. Electrolysis of palladium nitrate from 1 M to 4 M nitric acid medium at stainless steel electrode resulted in complete recovery of palladium with reasonably high Faradaic efficiency depending upon nitric acid concentration. However, the recovery and Faradaic efficiency were significantly lowered (to 40%) in the case of electrolysis from simulated high-level liquid waste due to other interfering competitive reactions.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,