Article ID Journal Published Year Pages File Type
193941 Electrochimica Acta 2009 4 Pages PDF
Abstract

In this study, single crystal V3O7·H2O nanobelts were successfully synthesized using a simple hydrothermal route, in which templates or catalysts were absent. The synthesized V3O7·H2O nanobelts are highly crystalline and have lengths up to several tens of micrometers. The width and thickness of the nanobelts are found to be about 30–50 and 30 nm, respectively. A lithium battery using V3O7·H2O nanobelts as the positive electrode exhibits a high initial discharge capacity of 409 mAh g−1, corresponding to the formation of LixV3O7·H2O (x = 4.32). Such a high degree of electrochemical performance is attributed to the intrinsic properties of the single-crystalline V3O7·H2O nanobelts.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,