Article ID Journal Published Year Pages File Type
193971 Electrochimica Acta 2007 9 Pages PDF
Abstract

The influence of iron doping level in Ba0.5Sr0.5Co1−yFeyO3−δ (y = 0.0–1.0) (BSCF) oxides on their phase structure, oxygen nonstoichiometry, electrical conductivity, performance as symmetrical cell electrode and oxygen permeating membranes was systematically investigated. A cubic perovskite structure was observed for all the compositions with the presence of iron. The increase of iron doping level resulted in the decrease of the lattice constant, room-temperature oxygen nonstoichiometry, total electrical conductivity, and the increase of area specific resistance (ASR) as cathode with samaria doped ceria electrolyte. However, promising cathode performance with an ASR as low as 0.613 Ω cm2 was still obtained at 600 °C for Ba0.5Sr0.5FeO3−δ (BSF). The ceramic membranes composing of BSCF with various iron doping level are all oxygen semi-permeable at elevated temperatures. The increase of iron doping level resulted in the decrease of oxygen permeation flux from JO2JO2 = 2.28 μmol cm−2 s−1 (STP) for Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCF5582) to ∼0.45 μmol cm−2 s−1 (STP) at 900 °C for BSF (y = 1.0) with the same membrane thickness of 1.1 mm, alongside with the change of the rate-determination step from the oxygen surface exchange to the slow oxygen bulk diffusion. The formation of composite oxide with a proper electronic conducting phase and the thin film technology are important for their prospective application as cathode in IT-SOFCs and oxygen permeating membrane, respectively.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,