Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
193973 | Electrochimica Acta | 2007 | 10 Pages |
Electrocodeposition of alumina particles with copper and nickel from acidic electrolytes has been investigated using different deposition techniques. Compared to direct current (DC) deposition, both pulse plating (PP) and pulse-reverse plating (PRP) facilitated higher amounts of particle incorporation. With conventional DC plating the maximum alumina incorporation is ∼1.5 wt% in a nickel and ∼3.5 wt% in a copper matrix. However, the implementation of rectangular current pulses can give considerably higher particle contents in the metal layer. A maximum incorporation of 5.6 wt% Al2O3 in a copper matrix was obtained by PP at a peak current of 10 A dm−2, a duty cycle of 10% and a pulse frequency of 8 Hz. In general, low duty cycles and high pulse frequencies lead to an enhanced particle codeposition. The microstructure and the hardness of both pure metal films and nanocomposite coatings showed only a weak dependence on the PP and PRP conditions.