Article ID Journal Published Year Pages File Type
194063 Electrochimica Acta 2007 9 Pages PDF
Abstract

X0.5Sr0.5Co0.8Fe0.2O3−δ (X = Ba, La and Sm) and La0.75Sr0.25Cr0.5X′0.5O3−δLa0.75Sr0.25Cr0.5X′0.5O3−δ (X′ = Mn, Fe and Al) mixed ionic–electronic conducting perovskite-based oxides have been tested as SOFC electrode materials on La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM) electrolytes under different atmospheres (air, oxygen, argon and dry and wet 5% H2/Ar) and the area-specific resistances (ASR) were compared. Ba0.5Sr0.5Co0.8Fe0.2O3−δ (BSCoF) possesses the lowest ASR values in air (0.04 Ω cm2 at 1073 K) whilst La0.75Sr0.25Cr0.5Mn0.5O3−δ (LSCrM) possesses the lowest ASR values in wet 5% H2/Ar (0.28 Ω cm2 at 1073 K). In addition, fuel cell tests were carried out using wet 5% H2/Ar as fuel and air as oxidant. The maximum power density (∼123 mW cm−2) at 1073 K was reached with the electrolyte-supported system BSCoF/LSGM/LSCrM (∼1.5 mm electrolyte thickness). Furthermore, LSCrX′ materials were used simultaneously as cathode and anode in fuel cell tests and the symmetric system LSCrM/LSGM/LSCrM (∼1.5 mm electrolyte thickness) reached a maximum power density of ∼54 mW cm−2 at 1073 K.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,