Article ID Journal Published Year Pages File Type
194284 Electrochimica Acta 2009 10 Pages PDF
Abstract

A holistic model was developed and applied to anodic alumina films galvanostatically grown in sulphuric acid solution at different anodising conditions thus characterised by different structural characteristics. The O2− and Al3+ species transport numbers near the metal|oxide interface were determined that depended on both temperature and current density. The rate of film thickness growth was found to be proportional to the O2− anionic current through the barrier layer near the metal|oxide interface. The results introduced a new growth mechanism theory embracing the rarefaction of barrier layer oxide lattice towards the metal|oxide interface. The oxide density near the metal|oxide is closely independent of anodising conditions and is related to the transformation of Al lattice to a transient oxide lattice about 37% rarer than that of γ-Al2O3 that is further suitably transformed to denser, amorphous or nanocrystalline material as this oxide is shifted to the oxide|electrolyte interface and becomes the pore wall material. This gradual lattice density variability can explain many peculiar properties of anodic alumina films.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,