Article ID Journal Published Year Pages File Type
194895 Electrochimica Acta 2007 7 Pages PDF
Abstract

We have investigated corrosion of aluminum current collectors in electrolytes containing LiTFSI salt by chronopotentiometry, cyclic voltammetery, chronoamperometry, electrochemical impedance spectroscopy, and optical microscopy. Open-circuit potentials for cells with gel electrolytes containing silica nanoparticles are relatively stable in comparison to the corresponding baseline liquid, which suggests that the Al/electrolyte interface is more stable in presence of silica nanoparticles. Cyclic voltammetery and chronoamperometry data show that the current density for Li/electrolyte/Al cells with gel electrolytes containing fumed silica was less than that for baseline liquid electrolyte. The Nyquist plot for liquid electrolyte after chronoamperometry is semicircular-like, that is a corrosion reaction occurred. After cell disassembly, black particulates are evident and pits are observed on the aluminum foil. In comparison, no corrosion products are observed for cells containing gel electrolytes, and the Nyquist plots indicate that corrosion does not occur appreciably. Gel electrolytes produce impedance spectra with a large phase lag over a wide frequency range, which is not observed for the baseline liquid electrolyte. These phenomena may be interpreted as a good film-coating behavior associated with gel electrolytes, which results in a lower aluminum corrosion rate.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,