Article ID Journal Published Year Pages File Type
194909 Electrochimica Acta 2007 8 Pages PDF
Abstract

In phosphoric acid solution (40% H3PO4), the corrosion behaviour of graphite and stainless steels was studied by the use of different electrochemical methods, namely polarization curve analysis, electrochemical impedance spectroscopy (EIS) and scanning vibrating electrode technique (SVET). The combined effect of chemical impurities and the increase of medium temperature was studied to approach the real conditions in the process of phosphoric acid manufacturing. It was found that the current density measured by polarization curves increased with the presence of chloride and sulphate ions in the acid solution whatever the tested material. Compared to stainless steels, graphite had the best corrosion resistance in polluted phosphoric acid. However, for graphite the increase of temperature from 20 to 80 °C induced an increase of the corrosion rate and potential and a decrease of the resistance confirmed by EIS results. Subsequently, local currents were detected at the surface of the sample by using the scanning vibrating electrode technique. From the data obtained, graphite surface manifested a distinctive behaviour from that of stainless steels. A generalized corrosion was occurred on graphite whereas a localized corrosion was observed for stainless steels. These results show a clear interest of graphite as component material in some of the equipments of the phosphoric acid industry.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,