Article ID Journal Published Year Pages File Type
195213 Electrochimica Acta 2007 12 Pages PDF
Abstract

The possibilities to electrodeposit thick coatings composed of nanoparticles of Sb and Sb2O3 for use as high-capacity anode materials in Li-ion batteries have been investigated. It is demonstrated that the stability of the coatings depends on their Sb2O3 concentrations as well as microstructure. The electrodeposition reactions in electrolytes with different pH and buffer capacities were studied using chronopotentiometry and electrochemical quartz crystal microbalance measurements. The obtained deposits, which were characterised with XRD and SEM, were also tested as anode materials in Li-ion batteries. The influence of the pH and buffer capacity of the deposition solution on the composition and particle size of the deposits were studied and it is concluded that depositions from a poorly buffered solution of antimony–tartrate give rise to good anode materials due to the inclusion of precipitated Sb2O3 nanoparticles in the Sb coatings. Depositions under conditions yielding pure Sb coatings give rise to deposits composed of large crystalline particles with poor anode stabilities. The presence of a plateau at about 0.8 V versus Li+/Li due to SEI forming reactions and the origin of another plateau at about 0.4 V versus Li+/Li seen during the lithiation of thin Sb coatings are also discussed. It is demonstrated that the 0.4 V plateau is present for Sb coatings for which the (0 1 2) peak is the main peak in the XRD diffractogram.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,