Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
195939 | Electrochimica Acta | 2007 | 9 Pages |
The effect of the boron content on the structural and electrochemical properties of nanocrystalline Ti2RuFeBx (with x varying from 0 to 12) was studied. The nanocrystalline materials were prepared by high energy ball milling and their structural evolution was analyzed by X-ray and neutron diffraction. Through a detailed Rietveld refinement analysis of the structural data, it is shown that the nanocrystalline materials are mainly composed of a B2 structure at low boron content (0 < x < 2). At higher boron content, TiB2 is mainly formed and the B2 structure disappears with the concurrent formation of a highly disordered Ru-rich phase. These electrodes were tested for the hydrogen evolution reaction in both NaOH and chlorate solutions. The best results are obtained for 4 ≤ x ≤ 6, with a cathodic overpotential at −250 mA/cm2, η250, of ∼−575 mV. Accelerated aging tests and continuous electrolysis tests show that η250 does not vary with time, contrary to the case of Ti2RuFe, which shows a rapid deterioration of the cathodic overpotential after a few hours of continuous electrolysis. This is explained by the lower solubility of hydrogen in Ti2RuFeB4 as opposed to Ti2RuFe.