Article ID Journal Published Year Pages File Type
196124 Electrochimica Acta 2006 13 Pages PDF
Abstract

Organic–inorganic hybrid electrolytes based on poly(propylene glycol)-block-poly(ethylene glycol)-block-poly(propylene glycol) bis(2-aminopropyl ether) (D2000) complexed with LiClO4 via the co-condensation of an epoxy trialkoxysilane and tetraethoxysilane have been prepared and plasticized by a solution of ethylene carbonate (EC)/propylene carbonate (PC) mixture (1:1 by weight). The cross-linked hybrid network shows no solvent exudation and retains a large amount of plasticizer over 70 wt.% in stable state. The in situ built in silica network provides the hybrid electrolytes with good mechanical properties. The ionic conductivity of the dry hybrid electrolyte films was enhanced by two orders of magnitude via plasticization, reaching a maximum conductivity value of 4.0 × 10−3 S/cm at 30 °C. Variable temperature 7Li–{1H} magic angle spinning (MAS) NMR demonstrated that the Li+ cations can be complexed by the polymer network as well as by the plasticizing solvents, but not with the incorporated silica network. Furthermore, the 7Li chemical shift change indicated a progressive change in the lithium coordination from lithium-polymer to lithium-solvent with increasing temperatures. The role of the solvents and the mobility of the lithium ions were investigated by pulsed gradient spin echo (PGSE) NMR measurements to elucidate the behavior of the ionic conductivity.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,