Article ID Journal Published Year Pages File Type
197047 Electrochimica Acta 2005 10 Pages PDF
Abstract

A miniature proton exchange membrane (PEM) fuel cell has been designed to enable in situ XAS investigations of the anode catalyst using fluorescence detection. The development of the cell is described, in particular the modifications required for elevated temperature operation and humidification of the feed gasses. The impact of the operating conditions is observed as an increase in the catalyst utilisation, which is evident in the EXAFS collected at the Pt LIII and Ru K edges for a PtRu/C catalyst. The Pt component of the catalyst was found to be readily reduced by hydrogen in the fuel, while the Ru was only fully reduced under conditions of good gas flow and electrochemical contact. Under such conditions no evidence of O neighbours were found at the Ru edge. The results are interpreted in relation to the lack of surface sensitivity of the EXAFS method and indicate that the equilibrium coverage of O species on the Ru surface sites is too low to be observed using EXAFS.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , , , ,