Article ID Journal Published Year Pages File Type
200768 Electronic Journal of Biotechnology 2015 6 Pages PDF
Abstract

BackgroundOsmolytes with their effective stabilizing properties are accumulated as protectants not only against salinity but also against denaturing harsh environmental stresses such as freezing, drying, high temperatures, oxygen radicals and radiation. The present work seeks to understand how Halomonas sp. AAD12 cells redirect carbon flux specifically to replenish reactions for biomass and osmolyte synthesis under changing salinity and temperature. To accomplish this goal, a combined FBA–PCA approach has been utilized.ResultsExperimental data were collected to supply model constraints for FBA and for the verification of the model predictions, which were satisfactory. With restrictions on the various combinations of selected anaplerotic paths (reactions catalyzed by phosphoenolpyruvate carboxylase, pyruvate carboxylase or glyoxylate shunt), two major phenotypes were found. Moreover, under high salt concentrations, when the glucose uptake rate was over 1.1 mmoL DCW- 1 h- 1, an overflow metabolism that led to the synthesis of ethanol caused a slight change in both phenotypes.ConclusionsThe operation of the glyoxylate shunt as the major anaplerotic pathway and the degradation of 6-phosphogluconate through the Entner–Doudoroff Pathway were the major factors in causing a distinction between the observed phenotypes.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,