Article ID Journal Published Year Pages File Type
201552 Fluid Phase Equilibria 2015 10 Pages PDF
Abstract

•The EoS originally developed for volatile species has been extended for a non volatile Ge(OH)4.•Thermodynamic properties of Ge(OH)4(aq) over a large T–P-water density range has been generated.•Results allow quantitative predictions of Ge transport and fractionation in aqueous fluid systems.

Although germanic acid is an important compound in many engineering and natural aqueous environments, its exact stoichiometry, structure and stability are insufficiently known. To fill this gap, we combined theoretical quantum chemistry simulations of Ge speciation and structure with a recently developed equation of state for aqueous neutral species, applied to available experimental GeO2(s) solubility measurements. Results allow generation of a consistent set of thermodynamic properties of Ge(OH)4(aq) over a large T–P-fluid density range (298–900 K, 0.1–300 MPa, and 0.01–1.0 g cm−3). These properties enable quantitative predictions of Ge transport and its fractionation from similar elements (e.g. Si) in aqueous vapour–liquid and supercritical fluid systems.

Graphical abstractFigure optionsDownload full-size imageDownload as PowerPoint slide

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , ,