Article ID Journal Published Year Pages File Type
201589 Fluid Phase Equilibria 2013 6 Pages PDF
Abstract

In this study, the equilibrium conditions of methane hydrate is measured experimentally in the presence of 1-ethyl-3-methyl-imidazolium chloride ([EMIM]-Cl) and 1-hydroxylethyl-3-methyl-imidazolium chloride ([OH-C2MIM]-Cl) solutions. These two ionic liquids are chosen to study their performances as low dosage hydrate inhibitors. To study the effect of these ionic liquids on the equilibrium phase boundary of methane hydrate, several experiments are conducted in a pressure range of 4–12 MPa. In addition, the equilibrium data in [EMIM]-Cl solutions are modeled using an equation that takes into account the effects of electrolyte on the activity of water. Results show that phase boundary of methane hydrate is shifted toward lower temperature at constant pressure from 0.1 to 1.5 K in the presence of these ionic liquids. This temperature shift, however, becomes more significant at pressures higher than 70 MPa.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , , ,