Article ID Journal Published Year Pages File Type
2036300 Cell 2011 11 Pages PDF
Abstract

SummaryThe eukaryotic replicative DNA helicase, CMG, unwinds DNA by an unknown mechanism. In some models, CMG encircles and translocates along one strand of DNA while excluding the other strand. In others, CMG encircles and translocates along duplex DNA. To distinguish between these models, replisomes were confronted with strand-specific DNA roadblocks in Xenopus egg extracts. An ssDNA translocase should stall at an obstruction on the translocation strand but not the excluded strand, whereas a dsDNA translocase should stall at obstructions on either strand. We found that replisomes bypass large roadblocks on the lagging strand template much more readily than on the leading strand template. Our results indicate that CMG is a 3′ to 5′ ssDNA translocase, consistent with unwinding via “steric exclusion.” Given that MCM2-7 encircles dsDNA in G1, the data imply that formation of CMG in S phase involves remodeling of MCM2-7 from a dsDNA to a ssDNA binding mode.

Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (156 K)Download as PowerPoint slideHighlights► Replicative helicase CMG can bypass a lagging strand but not a leading strand roadblock ► This suggests that native CMG translocates along ssDNA in the 3′ to 5′ direction ► MCM2-7 reconfigures from a dsDNA to a ssDNA binding mode during replication initiation

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , , , , , , ,