Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
2036547 | Cell | 2010 | 13 Pages |
SummaryGenetic and cell-based studies have implicated the PAF1 complex (PAF1C) in transcription-associated events, but there has been no evidence showing a direct role in facilitating transcription of a natural chromatin template. Here, we demonstrate an intrinsic ability of human PAF1C (hPAF1C) to facilitate activator (p53)- and histone acetyltransferase (p300)-dependent transcription elongation from a recombinant chromatin template in a biochemically defined RNA polymerase II transcription system. This represents a PAF1C function distinct from its established role in histone ubiquitylation and methylation. Importantly, we further demonstrate a strong synergy between hPAF1C and elongation factor SII/TFIIS and an underlying mechanism involving direct hPAF1C-SII interactions and cooperative binding to RNA polymerase II. Apart from a distinct PAF1C function, the present observations provide a molecular mechanism for the cooperative function of distinct transcription elongation factors in chromatin transcription.
Graphical AbstractFigure optionsDownload full-size imageDownload high-quality image (213 K)Download as PowerPoint slideHighlights► hPAF1C functions in transcription elongation on chromatin templates ► hPAF1C can synergize with SII/TFIIS in elongation ► Synergy involves direct cooperative binding between SII, PAF1C and RNA polymerase II