Article ID Journal Published Year Pages File Type
203756 Fluid Phase Equilibria 2007 6 Pages PDF
Abstract

A new molecular model for 1,1,1,2,3,3,3-heptafluoropropane (R227ea) was developed on the basis of quantum chemical calculations and optimized using experimental vapor pressure and bubble density data. In combination with an existing model for ethanol, a molecular model for the binary mixture R227ea + ethanol was defined, using the Lorentz–Berthelot combining rule. It was validated at 283.17 K, where, considering the statistical uncertainties, it agrees to the experimental vapor pressure. The vapor–liquid equilibrium, comprising both bubble line and dew line data, was predicted at 343.13 K by molecular simulation. The Peng–Robinson equation of state fails for this system.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, , , ,