Article ID Journal Published Year Pages File Type
2038515 Cell 2006 12 Pages PDF
Abstract

SummaryControl of membrane-receptor activity is required not only for the accuracy of sensory responses, but also to protect cells from excitotoxicity. Here we report the isolation of two noncomplementary fly mutants with slow termination of photoresponses. Genetic and electrophysiological analyses of the mutants revealed a defect in the deactivation of rhodopsin, a visual G protein-coupled receptor (GPCR). The mutant gene was identified as the calmodulin-binding transcription activator (dCAMTA). The known rhodopsin regulator Arr2 does not mediate this visual function of dCAMTA. A genome-wide screen identified five dCAMTA target genes. Of these, overexpression of the F box gene dFbxl4 rescued the mutant phenotypes. We further showed that dCAMTA is stimulated in vivo through interaction with the Ca2+ sensor calmodulin. Our data suggest that calmodulin/CAMTA/Fbxl4 may mediate a long-term feedback regulation of the activity of Ca2+-stimulating GPCRs, which could prevent cell damage due to extra Ca2+ influx.

Related Topics
Life Sciences Biochemistry, Genetics and Molecular Biology Biochemistry, Genetics and Molecular Biology (General)
Authors
, , , , , ,