Article ID Journal Published Year Pages File Type
204183 Fluid Phase Equilibria 2006 6 Pages PDF
Abstract

The kinetic data of methane hydrate dissociation at various temperatures and pressures were measured in a sapphire cell apparatus by depressurizing method. When the temperature was higher than 0 °C, the experimental results showed that the hydrate dissociation rate was controlled by intrinsic dissociation reaction. When the temperature was lower than 0 °C, water generated from the hydrate dissociation would transform into ice rapidly at the surface of hydrate crystal. The released gas diffused from the hydrate and ice mixture to the bulk of gas phase. With the hydrate continuous dissociation, the boundary of ice–hydrate moved toward water/ice phase. The hydrate dissociation was controlled by gas diffusion, and the hydrate dissociation process was treated as a moving boundary problem. Corresponding kinetic models for hydrate dissociation were established and good agreements with experimental data were achieved.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
, ,