Article ID Journal Published Year Pages File Type
204442 Fluid Phase Equilibria 2007 5 Pages PDF
Abstract

The fluid phase equilibrium of the Stockmayer fluid is investigated using a thermodynamic perturbation theory approach. The reference and the perturbation potential are the Lennard–Jones potential and the dipolar–dipolar interactions, respectively. They are assumed to be represented by the modified Benedict–Webb–Rubin equation of state [J.K. Johnson, J.A. Zollweg, K.E. Gubbins, Mol. Phys. 78 (1993) 591–618] and the Padé approximant [G. Stell, J.C. Rasaiah, H. Narang, Mol. Phys. 27 (1974) 1393–1414], respectively. The asymmetry found in an analogous study [M.E. van Leeuwen, B. Smit, E.M. Hendriks, Mol. Phys. 78 (1993) 271–283] based on the BWR equation of state [J.J. Nicolas, K.E. Gubbins, W.B. Streett, D.J. Tildesley, Mol. Phys. 37 (1979) 1429–1454] is now not observed on the vapour–liquid equilibrium coexistence curves of Stockmayer fluids with dipolar strength of μ*2 = 1, 2, 3, and 4. Results agree with computer simulations for dipolar strength of μ*2 = 1; however as strength dipole increases, liquid densities are over-estimated.

Related Topics
Physical Sciences and Engineering Chemical Engineering Chemical Engineering (General)
Authors
,