Article ID Journal Published Year Pages File Type
2058374 Marine Genomics 2008 9 Pages PDF
Abstract

Olfactory receptors are encoded by three large multigene superfamilies (OR, V1R and V2R) in mammals. Fish do not possess a vomeronasal system; therefore, it has been proposed that their V1R-like genes be classified as olfactory receptors related to class A G protein-coupled receptors (ora). Unlike mammalian genomes, which contain more than a hundred V1R genes, the five species of teleost fish that have been investigated to date appear to have six ora genes (ora1-6) except for pufferfish that have lost ora1. The common ancestor of salmonid fishes is purported to have undergone a whole genome duplication. As salmonids have a life history that requires the use of olfactory cues to navigate back to their natal habitats to spawn, we set out to determine if ora1 or ora2 is duplicated in a representative species, Atlantic salmon (Salmo salar). We used an oligonucleotide probe designed from a conserved sequence of several teleost ora2 genes to screen an Atlantic salmon BAC library (CHORI-214). Hybridization-positive BACs belonged to a single fingerprint contig of the Atlantic salmon physical map. All were also positive for ora2 by PCR. One of these BACs was chosen for further study, and shotgun sequencing of this BAC identified two V1R-like genes, ora1 and ora2, that are in a head-to-head conformation as is seen in some other teleosts. The gene products, ora1 and ora2, are highly conserved among teleosts. We only found evidence for a single ora1-2 locus in the Atlantic salmon genome, which was mapped to linkage group 6. Fluorescent in situ hybridization (FISH) analysis placed ora1-2 on chromosome 12. Conserved synteny was found surrounding the ora1 and ora2 genes in Atlantic salmon, medaka and three-spined stickleback, but not zebrafish.

Related Topics
Physical Sciences and Engineering Earth and Planetary Sciences Earth and Planetary Sciences (General)
Authors
, , , , , ,